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Abstract  
Background: Determining the optimal and effective scheme for administrating the 
chemotherapy agents in breast cancer is the main goal of this scientific research. 
The most important issue here is the amount of drug or radiation administrated in 
chemotherapy and radiotherapy for increasing patient's survival. This is because 
in these cases, the therapy not only kills the tumor cells, but also kills some of the 
healthy tissues and causes serious damages. In this paper we investigate optimal 
drug scheduling effect for breast cancer model which consist of nonlinear ordinary 
differential time-delay equations. 

Methods: In this paper, a mathematical model of breast cancer tumors is discussed 
and then optimal control theory is applied to find out the optimal drug adjustment 
as an input control of system. Finally we use Sensitivity Approach (SA) to solve the 
optimal control problem.  

Results: The goal of this paper is to determine optimal and effective scheme for 
administering the chemotherapy agent, so that the tumor is eradicated, while the 
immune systems remains above a suitable level. Simulation results confirm the 
effectiveness of our proposed procedure. 

Conclusion: In this paper a new scheme is proposed to design a therapy protocol 
for chemotherapy in Breast Cancer. In contrast to traditional pulse drug delivery, 
a continuous process is offered and optimized, according to the optimal control 
theory for time-delay systems. 
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Introduction 
   Cancer is one of the most dangerous illnesses, 

which causes many deaths every year. In a study 
done by the National Cancer Institute, there is 
approximately 40% chance for average individuals 
to develop cancer in their lifetime. This figure 
includes male and female of all races [1]. Among 
cancers, breast cancer is one of the most common 
ones. Near one in eight US women have been 
diagnosed with breast cancer in their life time [2]. In 
Iran, Similar to other part of the world breast cancer 
is the most prevalent malignancy among the women 
[3]. Surgery is the effective approach to control the 

disease but chemotherapy (CT) as an adjuvant or 
neoadjuvant pathway will help the patients and can 
improve the survival rate (OS= Overall Survival or 
DFS= Disease free Survival) [4,5]. Selecting the 
chemotherapy agents and combination with or 
without radiation therapy remained a scientific 
problem for oncologist, because of effectiveness of 
the medicine and complications of chemotherapy. So 
determining the optimal and effective scheme for 
administrating the CT agents in breast cancer cases is 
the main goal of this scientific research. Although new 
medical techniques are developed by scientists who 
are interested in gene therapy and immunotherapy, 
these techniques are still in the beginning. Therefore 
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traditional treatment regimes, such as chemotherapy 
and radiotherapy are still being practiced. The most 
important issue here is the amount of drug or 
radiation administrated in chemotherapy and 
radiotherapy for patient's survival. This is because in 
these cases, the therapy does not only kill the tumor 
cells; but also kills some of the healthy tissues and 
may result in serious damage; so the dosage of the 
therapy must be carefully adjusted in order to 
minimize damage of healthy tissue and maximize 
killing of tumor cells [6]. The interaction between the 
body’s immune system, drugs, and a tumor is very 
complex. In order to obtain a manageable model, 
we briefly review some key details about this system. 
Like all eukaryotic cells, tumor cells have four distinct 
cell cycles: G1 (pre-synthetic) phase, S (synthetic) 
phase, G2 (post-synthetic) phase, and mitosis. The 
phases G1, S, and G2 are collectively known as the 
interphase stage which either the cell prepares for 
division or some cells have an additional stage 
known as the G0 (or quiescent phase). At this stage 
the cell refrains from dividing for a long period of 
time. A quiescent cell will need some stimuli to enter 
the cell cycle [7]. Some cells may never enter the 
quiescent phase, while others same as many nerve 
cells, may stay in it for their entire life cycle. 

   In recent years, several papers have been 
devoted to the problems of modeling and analysis of 
the interaction between cycle specific drugs, the 
immune system, and tumor cells. Swanson, et al. [8] 
modeled glioblastoma multiform (a malignant type 
of brain tumour) tumour growth using partial 
differential equations (PDE). Some researchers also 
investigated the tumour growth model by using 
cellular automata, which can include very specific 
characteristics of tumour, patient, and drug 
effectively in the model [9-11]. Anderson and 
Chaplain [12] and Enderling et al. [13] also used 
both PDE's and the cellular automata approach to 
the tumour growth model, angiogenesis, and 
metastasis. Another different approach is the work of 
de Pillis and Radunskaya [14] who constructed a 
general tumour growth model using ordinary 
differential equations showing the dynamics of 
tumour growth by means of numbers of tumours, 
healthy, and immune cells. They also included 
chemotherapy effect in the model and applied 

bang-bang type optimal control to adjust the amount 
of drug while trying to constrain the normal and 
immune cell populations above some level. In further 
works of de Pillis et al. [15, 16], new cancer models 
were proposed and the effect of chemotherapy and 
immunotherapy were investigated. Also, in breast 
cancer model some studies has been done by 
researchers [17, 18] based on Ordinary Differential 
Equations. 

   The theory of optimal control has been already 
applied to the cancer. For example Acharya et al. 
[19] discussed about optimal drug delivery. Swan 
[20] gives a review of the ways in which optimal 
control theory is applied to growth kinetic models, 
cell cycle models, and a classification of other models 
together suggesting better chemotherapy strategies. 
De Pillis et al. [21] also faced problems of 
administration of chemotherapy but considering the 
interesting question of immune resistance; similar 
works have been previously published [22-27]. 

In this paper we investigate optimal drug 
scheduling effect for breast cancer model, which 
consist of nonlinear ordinary differential equations 
with time-delay [28]. Similar works has been done 
using heuristic methods but with ignoring quiescent 
cells [17].  

Materials and Methods 
   The Model proposed here comes from [28] the 

two previous models [17, 18] with small changes in 
the method of adding the effect of drug to the 
equations. This model, divides the population of 
tumor cells into interphase cells, mitosis cells, and 
quiescent cells, which are represented 

by )(tTI , )(tTM and )( tT Q  respectively. The term 

)(tI  represents the population of immune cells which 

are the cytotoxic T-cells. Also )(,)(),( 321 tututu  are 

the effects of chemotherapy drug concentration in the 
tissue or blood, which are proportional amount of 
drug dose given to the patient by oral, injection, or in 
the future technology by some kind of portable 
pumps or straps which can supply drug continuously 
to blood circulation. The resulting model is described 
by the following nonlinear delay differential 
equations: 
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All parameter values are in fractional amounts per 
day. Parameter τ  is the resident time of cells that is 
considered 0.92 as the same in [28]. The constants 

1a  and 4a  represent the fraction of cells, which 
change from interphase to mitosis and from mitosis to 
interphase, respectively. Both of these constants need 
to be between 0.2 and 1.0 per day. It is typical for 
these values to be between 0.7 and 1.0. The 

constants 1d , 2d  and 3d  represent fractions of 

natural cell death (apoptosis) and should be between 
0.1 and 0.3. The constants ic  model represents the 

losses of cells due to an encounter with other cells. 
For immune cells, these numbers are usually around 
0.1. When an immune cell and a cancer cells bind, 
approximately 10% of the time the immune cell is 
lost. For cancer cells this loss is somewhere around 
20% to 30%.  
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As above, the term (2) represents the nonlinear 

growth of the immune population due to the presence 

of a tumor. The constant 4a  and 5a  are transition 

rate of the proliferating cells to the quiescent cells 
and the quiescent cells to the proliferating cells, 

respectively. The constant 4d  represent the natural 
death rate of the quiescent tumor cells. Table 1 
summarizes all parameter values in this model. 
   By linearization of the above system around 
its initial nominal conditionφ , the linear state 

space model can be achieved as follows: 
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It has been assumed that 2=n  in (2). 
 

Optimal Control Design Using Sensitivity Approach 

   In this section, we will use the optimal control 
theory for linear systems with state time-delay. 
Although the system is linear, but time-delay in 
the model leads to two point boundary value 
problem (TPBVP), by not only time- delay terms 
but also time-advance terms [29]. Consequently, 
solving the optimal control problem is very 
difficult even for simple time delay systems, 
either exact solutions or numeral solutions. [28] 
An efficacious approach (Sensitivity Approach) 
was proposed to solve optimal control of linear 
systems with state time-delay. In this approach 

TPBVP was obtained from necessary conditions 
of optimality containing time-delay and time-
advance terms and then translating into infinite 
TPBVPs without time- delay and time-advance 
terms.  Through intercepting frontal finite terms 
of the optimal series solution, a suboptimal 
control law is obtained; the number of the terms 
intercepted is dependent on the size of the time-
delay. The method is especially suitable for the 
synthesis of small time-delay systems. For better 
understanding of the method, consider the linear 
system (3) with the following cost functional:
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Where Q  and S  are positive semi-definite, and R  is a positive definite matrices of appropriate dimensions, 

respectively. If ∞→t , the cost functional is as follow: 
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   The optimal control problem is to find out an optimal control law )(tu∗ ; the cost functional (4) is minimized 

while the dynamic equality constraint (3) is satisfied. According to the Pontryagin’s maximum principle, the 
optimality condition is obtained as the following nonlinear TPBVP: 
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With the boundary conditions: 
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Then the control law can be expressed as follow: 

)()( 1 tpBBRtu T−∗ −=  (8) 

   The TPBVP (6)-(7) concludes not only time-delay term but also time-advance term. It is difficult to solve this 
problem even numerical. In the sequel the TPBVP (6)-(7) is translated into a sequence of linear TPBVPs without 

Table 1. Parameters used in the model 

parameter 1a  4a  5a  6a  1c  2c  3c  

value 0.98 0.8 0.0001 0.00015 0.9 0.085 0.9

parameter 4c  5c  6c  1d  2d  3d  4d  

value 0.085 0.05 0.00085 0.029 0.11 0.11 0.11
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time-delay and time-advance terms. By solving that sequence recursively and through intercepting frontal N  

terms of infinite series solution parts in the expression of the optimal control law )(* tu ; we obtain a suboptimal 

control law in the form of state feedback, which increases robustness of the solution. 

Sensitivity Approach 
   First, we introduce a sensitivity parameter ε  in TPBVP (6)-(7) and obtain the following TPBVP including 
sensitivity coefficient ε  
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where 10 ≤≤ ε  is a scalar. In the following discussion, we always assume that the solution of TPBVP (9) is 

uniquely existed, and ),( εtx , ),( εtp  with parameter ε  are infinitely differentiable with respect to the ε  

around 0=ε , and their Maclaurin series expansions are convergent at 1=ε ; obviously when 1=ε , TPBVP (9) 
is equivalent to original problem (6). 
According to this assumption, we can write: 
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Now by substituting (10) into (9) and equating terms with the same order of ε  on each side we have:  
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It should be noted that in (12) )()1( τ−− tx i and )()1( τ+− tp i  are known from previous iteration so (11)-(20) is 

a sequence of inhomogeneous linear TPBVPs without time-delay and time-advance terms in each iteration. 

After determining )()( tx i  and )()( tp i  for 0≥i , ),( εtx  and ),( εtp  can be determined as the solution of 

TPBVP (9) by using (10). Consequently, at 1=ε , (9) and (8) are equivalent, so we have: 
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If we stop the procedure at this step, by using (8) and (13) we can find the optimal control law which is an 
open loop control; but for obtaining a close loop control in the form of state feedback, we continue our 
discussion by assuming that i th-order terms of )(tp  in (12) be  

)()()( )()( tgtKxtp i
ii +=  (14) 

where K  is the unique positive solution of the Riccati matrix equation 
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And 0)(0 =tg . Substituting (14) into (12) yields 
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where 
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and 0)(0 =tg  for 0<≤− tτ . After solving (16), we can obtain )(),()( tgtx i
i  and consequently, )()( tp i  

according to (14) for ,...2,1,0=i  by using, (13) the optimal state trajectory )(tx and optimal co-state vector 

)(tp  can be determined. Optimal control law would be: 
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It should be noted that the state feedback term in (20) is the exact solution. In practice, calculating infinite terms 
of series in (16) is almost impossible, intercepting N  terms of the series, we obtain a suboptimal solution 
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Results 
It is known that at the early stages of 

carcinogenesis, immune cells fight against the tumor 
cells. Depending on the aggressiveness of the tumor 
and strength of the patient's immune system, 
carcinogenesis can be avoided, meaning the system 
goes to an equilibrium corresponding to a zero 
tumors level. However, if the immune system of the 
patient is weak, the tumor cells population cannot be 
inhibited and the system goes to a large tumor 
equilibrium point, causing patient's death. It is 
desired that the immune cells are kept in a specific 
range above the tumor cells level. For this, we should 

define rtItI new −=
Δ

)()(   as a new state variable in 

(1), in which r  represents a constant desired value 

of immune cells level. In this simulation, we take 
1=R  , 0=S  and Q  as a unity matrix of dimension 

four. After simulation, it is clear that the optimal 
control functions, which show the effect of drug 
concentration in the blood, can effectively control the 
system. In 20 days time, the population of tumor cells 
decreases to zero whereas immune cells remain at 
the upper level. Also, in figure 2 the effects of the 
drug using chemotherapy agents can be seen. 
Constructing an agent of this concentration with this 
effect in the blood is beyond the paper’s goal. Also 
we just offered a new therapy protocol. This 
computational approach may not prove to be 
practical and requires further experiment for 
validation of its approach. 
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Figure 1. Population of cells during therapy 
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Conclusion 
In this paper a new scheme is proposed to design 

a chemotherapy protocol in breast cancer. In contrast 
to traditional pulse drug delivery, a continuous 
process is offered and optimized according to the 
optimal control theory for time-delay systems. The 
results are in a research stage and there is no 
guarantee for real cases to use this procedure. 
Experimental works are needed to validate this 
scheme.     
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